Bayesian approximations and extensions: optimal decisions for small brains and possibly big ones too.

نویسندگان

  • Alexander Lange
  • Reuven Dukas
چکیده

We compared the performance of Bayesian learning strategies and approximations to such strategies, which are far less computationally demanding, in a setting requiring individuals to make binary decisions based on experience. Extending Bayesian updating schemes, we compared the different strategies while allowing for various implementations of memory and knowledge about the environment. The dynamics of the observable variables was modeled through basic probability distributions and convolution. This theoretical framework was applied to the problem of male fruit flies who have to decide which females they should court. Computer simulations indicated that, for most parameter values, approximations to the Bayesian strategy performed as well as the full Bayesian one. The linear approximation, reminiscent of the linear operator, was notably successful, and, without innate knowledge, the only successful learning strategy. Besides being less demanding in computation and thus realistic for small brains, the linear approximation was also successful at limited memory, which would translate into robustness in rapidly changing environments. Knowledge about the environment boosted the performance of the various learning strategies with maximal performance at large utilization of memory. Only for limited memory capacities, intermediate knowledge was most successful. We conclude that many animals may rely on algorithms that involve approximations rather than full Bayesian calculations because such approximations achieve high levels of performance with only a fraction of the computational requirements, in particular for extensions of Bayesian updating schemes, which can represent universal and realistic environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multihypothesis sequential probability ratio tests - Part I: Asymptotic optimality

The problem of sequential testing of multiple hypotheses is considered, and two candidate sequential test procedures are studied. Both tests are multihypothesis versions of the binary sequential probability ratio test (SPRT), and are referred to as MSPRT’s. The first test is motivated by Bayesian optimality arguments, while the second corresponds to a generalized likelihood ratio test. It is sh...

متن کامل

On the properties of variational approximations of Gibbs posteriors

The PAC-Bayesian approach is a powerful set of techniques to derive non-asymptotic risk bounds for random estimators. The corresponding optimal distribution of estimators, usually called the Gibbs posterior, is unfortunately often intractable. One may sample from it using Markov chain Monte Carlo, but this is usually too slow for big datasets. We consider instead variational approximations of t...

متن کامل

MULTIHYPOTHESIS SEQUENTIAL PROBABILITY RATIO TESTS , PART I : ASYMPTOTIC OPTIMALITYVladimir

{ The problem of sequential testing of multiple hypotheses is considered, and two candidate sequential test procedures are studied. Both tests are multihypothesis versions of the binary sequential probability ratio test (SPRT), and are referred to as MSPRT's. The rst test is motivated by Bayesian optimality arguments, while the second one corresponds to a generalized likelihood ratio test. It i...

متن کامل

Multihypothesis Sequential Probability Ratio Tests , Part I : Asymptotic

{ The problem of sequential testing of multiple hypotheses is considered, and two candidate sequential test procedures are studied. Both tests are multihypothesis versions of the binary sequential probability ratio test (SPRT), and are referred to as MSPRT's. The rst test is motivated by Bayesian optimality arguments, while the second one corresponds to a generalized likelihood ratio test. It i...

متن کامل

A New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction

In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 259 3  شماره 

صفحات  -

تاریخ انتشار 2009